Interference of antihypertrophic molecules and signaling pathways with the Ca2+-calcineurin-NFAT cascade in cardiac myocytes.
نویسندگان
چکیده
Cardiac hypertrophy occurs in a number of disease states associated with chronic increases in cardiac work load. Although cardiac hypertrophy may initially represent an adaptive response of the myocardium, ultimately, it often progresses to ventricular dilatation and heart failure. Much investigation has focused on the signaling pathways controlling cardiac hypertrophy at the level of the single cardiac myocyte. One prohypertrophic pathway that has received much attention involves the ubiquitously expressed Ca2+/calmodulin-activated phosphatase calcineurin. Upon activation by Ca2+, calcineurin dephosphorylates nuclear factor of activated T cell (NFAT) transcription factors, leading to their nuclear translocation. As common in complex biological systems, cardiac hypertrophy is controlled simultaneously by stimulatory (prohypertrophic) and counter-regulatory (antihypertrophic) pathways. Given the potent prohypertrophic effects of the Ca2+-calcineurin-NFAT pathway in cardiac myocytes, it is not surprising that the activity of this pathway is tightly controlled at multiple levels. Inhibitory mechanisms upstream (nitric oxide (NO), cGMP, cGMP-dependent protein kinase type I (PKG I), heme oxygenase-1 (HO-1), biliverdin, carbon monoxide (CO)) and downstream from calcineurin (glycogen synthase kinase-3 (GSK3), c-Jun N-terminal kinases (JNKs), p38 mitogen-activated protein kinase (MAPKs)) have been described. Moreover, several inhibitors directly target calcineurin enzymatic activity (cyclosporine A (CsA), tacrolimus (FK506), calcineurin-binding protein-1 (Cabin-1)/calcineurin-inhibitory protein (Cain), A-kinase-anchoring protein-79 (AKAP79), calcineurin B homology protein (CHP), MCIPs, VIVIT). Considering the dominant role of the calcineurin pathway in cardiac hypertrophy and failure, calcineurin-inhibitory strategies may lead to the identification of novel therapeutic approaches for patients with cardiac disease.
منابع مشابه
Inhibition of calcineurin-NFAT hypertrophy signaling by cGMP-dependent protein kinase type I in cardiac myocytes.
Recent investigation has focused on identifying signaling pathways that inhibit cardiac hypertrophy, a major risk factor for cardiovascular morbidity and mortality. In this context, nitric oxide (NO), signaling via cGMP and cGMP-dependent protein kinase type I (PKG I), has been recognized as a negative regulator of cardiac myocyte (CM) hypertrophy. However, the underlying mechanisms are poorly ...
متن کاملDecreased KCNE2 Expression Participates in the Development of Cardiac Hypertrophy by Regulation of Calcineurin-NFAT (Nuclear Factor of Activated T Cells) and Mitogen-Activated Protein Kinase Pathways.
BACKGROUND KCNE2 is a promiscuous auxiliary subunit of voltage-gated cation channels. A recent work demonstrated that KCNE2 regulates L-type Ca2+ channels. Given the important roles of altered Ca2+ signaling in structural and functional remodeling in diseased hearts, this study investigated whether KCNE2 participates in the development of pathological hypertrophy. METHODS AND RESULTS We found...
متن کاملcAMP-binding protein Epac induces cardiomyocyte hypertrophy.
cAMP is one of the most important second messenger in the heart. The discovery of Epac as a guanine exchange factor (GEF), which is directly activated by cAMP, raises the question of the role of this protein in cardiac cells. Here we show that Epac activation leads to morphological changes and induces expression of cardiac hypertrophic markers. This process is associated with a Ca2+-dependent a...
متن کاملNFAT transcription factors are critical survival factors that inhibit cardiomyocyte apoptosis during phenylephrine stimulation in vitro.
Biomechanical stress on the heart results in activation of numerous signaling cascades, leading to cardiomyocyte hypertrophy, apoptosis, and ultimately, heart failure. The Ca2+-dependent phosphatase calcineurin is an essential mediator of cardiac hypertrophy, and in most but not all studies, calcineurin inhibition attenuated cardiac hypertrophy in vivo. However, calcineurin inhibition has been ...
متن کاملMolecular engineering of the TRPC3 pore structure identifies Ca2+ permeation through TRPC3 channels as a key determinant of cardiac calcineurin/NFAT signaling
Results Elimination of Ca permeation through TRPC3 abrogated its ability to trigger NFAT translocation in both HEK293 cells and in HL-1 atrial myocytes. Wild-type TRPC3 was found capable of initiating NFAT translocation in atrial myocytes by a small, homogenous elevation of cytoplasmic Ca that was independent of voltagegated CaV1.2 channels. By contrast, a Ca 2+ impermeant TRPC3 mutant strongly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 63 3 شماره
صفحات -
تاریخ انتشار 2004